“satellite”
version 1.0.0
User Manual

July 21, 2010

V. Eymet, LAPLACE, Université Paul Sabatier, 31062 Toulouse, France

Contents

1 Introduction 2
1.1 Purpose of thecode 2
1.2 Informatics 3

2 Input data files 4
21 datadin 4
2.2 integrated solar TOA fluxes.txt. 4

3 Compiling and using the code 6
3.1 [Installation of MPICH 6
3.2 Tweaking the “Makefile” 7
3.3 Setting up array sizes 7
3.4 Compilation 8
3.5 Running the code using MPICH 8

4 Results 10

1 Introduction

This document is intended to be used by any new user of the code “satellite” .
The basic linux commands are supposed to be known (file system commands,
environment variables use, basic shell scripts).

The user is free to use and modify the sources of the code. It has been
writen in fortran 77, which imposes some limitations, mostly for memory
management.

Any question, remark, or improvement suggestion is welcome, and should
be submitted by e-mail to the author (Vincent Eymet, eymet@laplace.univ-
tlse.fr).

1.1 Purpose of the code

“satellite” is intended at computing the solar radiative flux density (W /m?)
received by a satellite detector. It uses as an input the angular distribution of
top of atmosphere fluxes that results from solar radiative transfer simulations
that have been performed using the “planet EMC” computation code.

A

—] observation direction

-

- ‘ﬁwe"te

satellite |atitude

intersected position
(on planet surface)

planet surface
satellite
altitude

Figure 1: Basic sketch of the geometric configuration

As shown in figure 2.2, the satellite is defined by its position, the direction
the detector is observing, and the detector’s observation cone. Variables used
for the description of the geometric configuration are described in section 2.

Results can be interpreted as an integrated radiance: “satellite” computes
the solar power density (Watts per square meter) that reach the detector (sur-
face normal to the observation direction), in a given spectral interval, within
the observation cone; units is Watts per square meter of normal surface.

1.2 Informatics

Compiling the program “satellite” does not require external librairies: all
source files are included in the package. “satellite” is actually a part of the
“planet EMC” project.

“satellite” is a fully parallel program. Specific parallelization instructions
require having MPICH2 installed and functionnal.

2 Input data files

This section describes the input data files that are needed by the code. Ex-
ample files are provided.

2.1 data.in

The “data.in” file resides into the “satellite” main folder. It contains:

e The satellite’s latitude, in degrees. Latitude is defined from the equa-
torial plane, and can therefore be positive or negative.

e The satellite’s longitude, in degrees. Longitude is defined from the
planet’s reference latitudinal plane.

e The satellite’s altitude, in kilometers. Altitude is defined from the
planet’s ground level.

e The latitude and longitude of the position that is intersected by the
observation direction, on the planet’s ground.

e The integration angle, i.e. the angle that defines the observation cone
around the observation direction.

2.2 integrated solar TOA fluxes.txt

This file resides within the “data” folder of “satellite” . It is an output file of
the “planet EMC” simulation code. This file contains:

e A description of the longitude/latitude grid used for the simulation.
e A description of the spactral grid used for the simulation.

e The simulated upward solar flux density angular distribution at the top
of the atmosphere, for each spectral interval.

)

From the solar flux angular distributions, “satellite” ’s main task is to
identify which angular sectors contribute to the flux that will be received by
the detector, and then to compute the total flux density at the detector’s
position, for each spectral interval.

observation cone

satellite

Y

atmosphere

ground

Figure 2: What is done: “satellite” first identifies which angular sectors con-
tribute to the radiation received by the detector: in this example, only sectors
3 to 5 do send radiation into the observation cone. For each one of these an-
gular sectors, the code has to compute the part of the surface (at top of
atmosphere level) that contributes, and to integrate the angular distribution
of radiation emitted into the observation cone.

3 Compiling and using the code

As mentionned in section 1, “satellite” requires MPICH version 2 to be in-
stalled, because the code has been parallelized.

3.1 Installation of MPICH

If you do not already have MPICH installed on the machine / group of
machines you want to run “satellite” on, you will first have to download
mpich2 from http://www.mcs.anl.gov /research /projects/mpich2 ; make sure
you download version 1.0.7. or newer. Next, untar the downloaded archive,
and install it on every system that will be part of your cluster:

First, you may have to set environment variables CFLAGS, FFLAGS,
FIO0OFLAGS, CXXFLAGS, F77 and F90 according to your architecture and
the compilers that are installed on your system.

> export CFLAGS="-m32” (use “-m64” on 64 bits systems)

> export FFLAGS="-m32" (idem)

> export CXXFLAGS="-m32” (idem)

> export F77="ifort” (use any other compiler)

> export F90="ifort” (idem)

> ./configure —prefix=/path/to/installation /directory

> make

> make install

Before running the MPD daemon, you must create a “.mpd.conf” file in
your home folder:

> echo secretword=[secretword| » /.mpd.conf

> chmod 600 .mpd.conf

using any “secretword”.

Next, you will need to be able to connect via ssh to every other machine
of your cluster, with no password request. For this, you must first create a
DSA key on the machine you will run the code from :

> ssh-keygen -t dsa

leaving all fields blank (use the “enter” key to answer each question).
Then you will have to add this DSA key to the list of authorized keys of
every machine that will need to be accessed for computation :

> cd .ssh

> cat id_dsa.pub » authorized keys

Finally, create the list of machines that belong to your cluster. This list
must reside within the “mpd.host” file on your home folder. Each line must
contain the name of the machine, by order of availability:

[host1].[domain]

[host2].[domain]

[host3].|[domain]

etc

You can then try to run the MPD daemon:

> mpdboot -n [#]

with [#] the number of hosts you want to run MPD on (typically, the
number of machines in your cluster). If you encounter no error, you can
use command “mpdtrace” to check the number of hosts the MPD daemon is
running on. This should give you the list of machines in your cluster.

3.2 Tweaking the “Makefile”

Before compiling, you will have to find out what compilation options are
right for your compiler, and your machine. Open the “Makefile” file, and
look at variables “FOR”, “ARCH” and “OPTI”. Variable “FOR” is used to
specify your fortran 77 compiler. As “satellite” uses MPICH, you will most
likely use the “mpif77” compilation command, that has been installed along
with MPICH.

Variable “ARCH” is used to specify machine architecture. “-m486” is
probably a good choice for a PC running a 32bits linux. On recent Mac com-
puters, “i686 -m64” works. Use the documentation of your fortran compiler
to find out what architecture option you can use.

Variable “OPTI” is used to specify code optimization options. The default
options should be enough. Please note that you definitely must use option
““Wno-globals” for compiling parallel code.

You might also want to set variable “DEBUG” (look for its definition in
the file). You can expect faster execution times if you leave it empty.

3.3 Setting up array sizes

One limitation of fortran 77 code is that you must define array sizes before
compilation. Arrays sizes used by the present code are defined within the
“includes/max.inc¢” file. You should at least look at it before compiling, and
more precisely at the value of variables Ntheta mx, Nphi mx, Nz mx,

Nb_clouds mx, Nb_gas mx and Nq_ mx. Please note you should never
modify the value of variable Nmat_mx (3).

3.4 Compilation

Once you checked compilation options and array size definitions, you can use
the following command in order to compile the executable file:

> make all

If compilation fails, use the compiler error message to determine what
went wrong. The most probable error causes are: a bad definition of archi-
tecture compilation option, or an inappropriate value in code optimization
options.

If you ever need to modify the source files (in directory “source”), you can
quickly recompile the code using “make all” again. This will only recompile
the modified source files, and link objects files in order to produce the new
executable file.

If you have to modify the value of any variable defined in includes files
(directory “includes”), you will have to recompile the whole code from scratch.
Use the following command to erase all objects files:

> make clean all

and then recompile them properly with “make all”.

Odd errors may happen if you modify an include file and then recompile
using only the “make all” command (old value of the modified variable will
remain in the unchanged object files).

3.5 Running the code using MPICH

Once everything is installed and the executable file “satellite.exe” file has
been compiled, you can try to run a computation. I would recommend that,
for the first time, you run “satellite” using the provided example data files.

Use the following command to run the code:

> mpirun -np |#]| satellite.exe

with [#] the number of processes that have to run.

Because communication times are small compared to computation times
in “satellite” , it is a good idea to chose a number of processes equal to the
number of (physical) processors of your cluster, plus one. One process, the
master process, is dispatching computational loads to every other processes
(slave processes), and gathering results from them. It does not require any

significant CPU time, therefore it is OK to have a number of slave processes
equal to the number of processors, so that each slave process can use a
processor (or each processor will have only one slave process running on it).
In practice, if your cluster is composed of n processors, you can use:
> mpirun -np n-+1 satellite.exe

10

4 Results

Results are recorded into file “results/detector.txt”. It contains:

e The number of spectral intervals
e Their limits in pum.

e The solar flux density (W/m?) received by the detector, in each spectral
interval, along with the associated numerical uncertainties.

e The total solar flux density (W/m?) received by the detector and its
uncertainty.

